skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Jun_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cyclostrophic rotation in the core region of tropical cyclones (TCs) imprints a distinct signature upon their turbulence structure. Its intensity is characterized by the radius of maximum wind, , and the azimuthal wind velocity at that radius, . The corresponding cyclostrophic Coriolis parameter, /, far exceeds its planetary counterpart, , for all storms; its impact increases with storm intensity. The vortex can be thought of as a system undergoing a superposition of planetary and cyclostrophic rotations represented by the effective Coriolis parameter, . On the vortex periphery, merges with . In the classical Rankine vortex model, the inner region undergoes solid‐body rotation rendering constant. In a more realistic representation, is not constant, and the ensuing cyclostrophic ‐effect sustains vortex Rossby waves. Horizontal turbulence in such a system can be quantified by a two‐dimensional anisotropic spectrum. An alternative description is provided by one‐dimensional, longitudinal, and transverse spectra computed along the radial direction. For rotating turbulence with vortex Rossby waves, the spectra divulge a coexistence of three ranges: Kolmogorov, peristrophic (spectral amplitudes are proportional to ), and zonostrophic (transverse spectrum amplitude is proportional to ). A comprehensive database of TC winds collected by reconnaissance airplanes reveals that with increasing storm intensity, their cyclostrophic turbulence evolves from purely peristrophic to mixed peristrophic‐zonostrophic to predominantly zonostrophic. The latter is akin to the flow regime harboring zonal jets on fast rotating giant planets. The eyewall of TCs is an equivalent of an eastward zonal jet. 
    more » « less
  2. Abstract Initially a Category 3 storm, Hurricane Ian (2022) rapidly intensified on the West Florida Shelf reaching Category 5 over the course of about 12 hr. Intensification occurred despite inhibiting factors such as high axial tilt, high vertical wind shear, low atmospheric moisture, and transit over a relatively shallow continental shelf. Using a high‐resolution simulation of Hurricane Ian from the Hurricane Weather Research Forecasting (HWRF) model, we examine the factors that both hindered and supported rapid intensification (RI) by blending various methods. We show that an increase in diabatic heating in the eyewall led to an inward radial advection of momentum, seen in both the absolute angular momentum budget and in the azimuthal wind budget. Analysis of the moist static energy budget indicates that the substantial latent heat flux from the surface was enough to balance heat losses through storm outflow. For instance, surface latent heat fluxes exceeded 1,500 W m−2on the West Florida Continental Shelf. As suggested by actual ocean temperature observations that substantially exceeded those in the HWRF simulation, the latent heating may have even been larger. Physical explanations for discrepancies between the simulated Hurricane Ian and observations are provided, particularly those pertaining to the coastal ocean at the time of Ian's passage. This research provides a comprehensive explanation of the RI of a hurricane using momentum budget analyses as part of a coupled air‐sea analysis. Our findings demonstrate the importance of in situ oceanic air‐sea measurements in evaluating the performance of coupled models, especially for hurricanes. 
    more » « less
  3. Abstract Airborne Doppler radar observations of the wind field in the tropical cyclone boundary layer (TCBL) during the landfall of Hurricane Ida (2021) are examined here. Asymmetries in tangential and radial flow are governed by tropical cyclone (TC) motion and vertical wind shear prior to landfall, while frictional effects dominate the asymmetry location during landfall. Strong TCBL inflow on the offshore‐flow side of Ida occurs during landfall, while the location of the peak tangential wind at the top of the TCBL during this period is located on the onshore‐flow side. A comparison of these observations with a numerical simulation of TC landfall shows many consistencies with the modeling study, though there are some notable differences that may be related to differences in the characteristics of the land surface between the simulation and the observations here. 
    more » « less
  4. Abstract Supercells in landfalling tropical cyclones (TCs) often produce tornadoes within 50 km of the coastline. The prevalence of TC tornadoes near the coast is not explained by the synoptic environments of the TC, suggesting a mesoscale influence is likely. Past case studies point to thermodynamic contrasts between ocean and land or convergence along the coast as a possible mechanism for enhancing supercell mesocyclones and storm intensity. This study augments past work by examining the changes in the hurricane boundary layer over land in the context of vertical wind shear. Using ground-based single- and dual-Doppler radar analyses, we show that the reduction in the boundary layer wind results in an increase in vertical wind shear/storm-relative helicity inland of the coast. We also show that convergence along the coast may be impactful to supercells as they cross the coastal boundary. Finally, we briefly document the changes in mesocyclone vertical vorticity to assess how the environmental changes may impact individual supercells. 
    more » « less
  5. Abstract Understanding physical processes leading to rapid intensification (RI) of tropical cyclones (TCs) under environmental vertical wind shear is key to improving TC intensity forecasts. This study analyzes the thermodynamic processes that help saturate the TC inner core before RI onset using a column‐integrated moist static energy (MSE) framework. Results indicate that the nearly saturated inner core in the lower‐middle troposphere is achieved by an increase in the column‐integrated MSE, as column water vapor accumulates while the mean column temperature cools. The sign of the column‐integrated MSE tendency depends on the competition between surface enthalpy fluxes, radiation, and vertical wind shear‐induced ventilation effect. The reduction of ventilation above the boundary layer due to vertical alignment is crucial to accumulate the energy within the inner core region. A comparison of the RI simulation with a null simulation further highlights the impact of vortex structure on the thermodynamic state adjustment and TC intensification. 
    more » « less